
ProgXML

Programming-XML
Concept Paper / “Light Green Paper”

Informal Peer Review Copy
http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

Michael Hugh Knowles

June 21, 2011
© 1998-2011 by Michael Hugh Knowles, mhk(at)mhknowles(dot)net

The terms “ProgXML”, “Programming-XML”, “Programming XML”, and any other
reasonable resemblances are intended by the author to be placed in and remain in

the public domain

 ProgXML — Programming-XML
Michael Hugh Knowles

2 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

This concept paper—a “light green paper”, but not yet a white paper—, though
copyright and other restrictions may otherwise apply, may be freely distributed if it
is distributed on an “as is” basis, unedited and in its entirety, as this pdf file, the
most recent version of which can be found at
http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf.

Advisory
When XML first came out, I named the concept I am
trying to promote in this paper “ProXML”, short for
“Programming-XML”. Well, over the years, other people
started using “ProXML” for various and quite different
things, and some have made trademark claims on it. So,
I decided (in early 2010) that I would change my term to
“ProgXML”, which no one else seems to have laid claim
to or even used. I consider “ProgXML” to be a generic
term, and I intend that it and any terms sufficiently
generically equivalent be in the public domain. But I am
also intending that the term in the public domain refer
to the concept outlined in this concept paper

Abstract
This concept paper—a “light green paper”, a variant of
the term more common in the European community—
proposes that an extension of XML be researched &
developed so as to eventually become a replacement
for standard High-Level Languages for standard
computer program development, eventually entirely

 ProgXML — Programming-XML
Michael Hugh Knowles

3 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

replacing today’s standard general HLLs, and allow easy
extension to any special purpose kinds. A brief history is
given, with a quick description of some of the first baby
steps already taken along these lines, such as MathML
and Microsoft’s WPF and XAML. Two “laundry lists” give
comparisons between standard HLLs and a possible
Programming-XML/ProgXML approach in terms of their
respective qualities, limitations, and future potentials.
(It is the intent of the author that the term “ProgXML”
and other sufficiently generic terms be in the public
domain.)

NB: ProgXML is a completely different concept from
what have become the usual “XML-based programming
languages”, which are more-or-less standard High Level
Languages, except that XML is used to implement them.
They have only their single, standard HLL mode for
program entry-editing-presentation/viewing.

KEYWORDS
Programming Languages, Programming Techniques,

Programming Development Systems,
Programming-XML, ProgXML

 ProgXML — Programming-XML
Michael Hugh Knowles

4 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

Introduction
Software has made great strides in some very

important directions in the last half century. Managing
data, previously paper based, has become much easier
with database developments, especially since relational
databases evolved in the ’60s, and capable of more
“intelligence” and extensions thereto since the
introduction of XML.

User interfaces to computers, which transcend
many of paper’s limitations and have even started to
replace it, have come a long way since the binary
switches and punch card decks of the ’40s and ’50s
(actually, I used both in the ’60s and even the ’70s), and
have started becoming more intelligent and easily
extensible since e.g. we started handling forms with
XML. Today’s user interfaces are beginning to be heavily
graphically oriented (so far limited to 2 or “3”
dimensions), a feature which greatly extends—almost
“transcends”—the inherently “linear” nature of the
older pre-graphics user interfaces. (E.g. “printers” used
to be “line printers”.)

And, with the evolution of “word processing”,
which evolved from a glorified marketing gimmick to

 ProgXML — Programming-XML
Michael Hugh Knowles

5 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

sell typewriters-now-crudely-interfaced-to-computers
to a still evolving reality, visually sophisticated paper
documents are much easier than ever to develop and
manage in ever more dismaying quantities, with an ever
increasing market share being picked up by “totally”
electronic production and distribution, together with
computer-based intelligent search and management
possibilities (and again we see databases and user
interfaces) since the introduction of… XML again. We
are also seeing the growing popularity of “e-
documents”, which can update e.g. spreadsheet data in
“real-time” (even if frustratingly slowly at times, and at
the mercy of the vagaries of one’s wideband service)
and can even be interactive with the user (more on
which later).

XML – eXtensible Markup Language
XML (“ben SGML”) has become a universal

darling in the decade since its development in 1996,
followed two years later by the release of XML 1.0 by
the World Wide Web Consortium (W3C). XML
(eXtensible Markup Language) was designed to be an
Internet-oriented version of the more purely document-
oriented SGML (Standard Generalized Markup
Language). XML is explicitly semantics-based, as

 ProgXML — Programming-XML
Michael Hugh Knowles

6 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

opposed to “text/presentation-based” where the
semantics is hard-programmed into the compiler that
“decodes” and “compiles” the text by means of the
implicit “syntax” of said text. Uses are now commonly
seen for XML in all directions, all directions except for
the whole computer programming and software
development process itself. This article hopes to inspire
the eventual alleviation of this oversight.

The Early Days of Computer Programming
Computer programming started as instructions

and data entered through physical switches as machine-
level binary (as opposed to higher-level codes to be
decoded later). The first big advance over this was
“assembly language”, where the instructions and data
were entered as text/character-based mnemonic
codes/symbols and number representations. Punch
paper tape and punch cards were adapted for external
storage of computer data and programs, and of course
for loading programs and data into the computer
through an appropriate electro-mechanical interface.
Scalability of assembly language programs was found to
be a problem early on, although multi-million line
programs were written “successfully”, with

 ProgXML — Programming-XML
Michael Hugh Knowles

7 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

maintenance headaches scaling up quite a bit faster
than the program size.

The next—and last—big evolutionary advances
(as opposed to “merely” important advances) in
computer programming/software development came
with the evolution of High-Level Languages (HLLs, such
as FORTRAN, LISP, ALGOL, COBOL, C, C++, JAVA, C#), the
storage of programs and data on computer accessible
electro-mechanical devices (drums, disks, and magnetic
tape drives) in files in a “high-level” file system (with
naming, etc.), and moving the user interface from punch
cards to electronic terminals linked directly to the
computer. The latter was a lot like punching cards and
putting them through the card reader, except that first
entry and later editing was through a character based
(non-graphics) terminal, and the files resided on the disk
(and hopefully on backup tape, in case of all too
frequent accidents). Graphics terminals are now
common, but programs are still stored as “lines” of text
(of e.g. ASCII characters) representing the computer
program code in a file on a disk, i.e. glorified electronic
punch cards.

The scalability problems associated with
assembly language (across the board: design,

 ProgXML — Programming-XML
Michael Hugh Knowles

8 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

programming, debugging, maintenance, etc) were
perhaps the major driving factors in the switch to HLLs,
not just for applications but for systems programming.
Our HLLs have continued to evolve considerably beyond
FORTRAN and COBOL, the first widely used HLLs, first
introduced in 1957 and 1957, respectively, but they are
still one-dimensional representations of the vastly
higher number of logical-linguistic-conceptual-ideal
dimensions that today’s HLLs and programs attempt to
deal with. (LISP, first introduced in 1958, never gained
wide popularity, except—very importantly—in the early
world of Artificial Intelligence—AI.) These HLL-based
programs are still held in perhaps the simplest of
today’s databases, these collections of one dimensional,
lines-of-text-oriented files, in hierarchical file structures,
much as word-processing document files once were,
and still are for that matter.

Although interlinking can become complex, the
HLL text in these files is piece-wise linearly input into a
very large and complex program, the compiler (for that
HLL). This process may leave either a fully-linked
executable, or one or more pieces of partially
constructed program that need to be linked, perhaps
dynamically, before/while the program is later

 ProgXML — Programming-XML
Michael Hugh Knowles

9 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

executed. The compiler, through a very complex
grammar-oriented process, “lexically analyzes” then
“parses” or “syntactically analyzes” the text—i.e.
“recognizes” the program’s lexical entities implicit in the
one-dimensional text, then “recognizes” the syntactic-
grammatical constructions implicit in the linear
arrangement of those lexical entities—and emits the
code to perform the semantics implicit in the syntactic-
grammatical constructions. (The higher the level of the
language, the more “implicit” the syntax and associated
semantics are.) Multiple HLLs are allowed in more
sophisticated systems such as Microsoft’s .NET
framework.

Scalability problems still abound. HLLs
postponed them, but did not eliminate them. Large
programs are still unwieldy to design, program, debug
and maintain. A variant of Parkinson’s Law—or
Malthus—seems to hold in programming: people always
want to create programs that outstrip resource
limitations, with scalability limitations of the HLL-based
programming process itself tending to lead the pack.

Microsoft’s .NET Framework(s)
Microsoft describes its .NET as (paraquoting) “a

set of software technologies for connecting people,

 ProgXML — Programming-XML
Michael Hugh Knowles

10 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

systems, information, and devices that is built on a
foundation of XML Web services, so that new and
existing applications can connect with software and
services across operating systems, programs, and
programming languages.” These “operating systems”
and “programs” are all programmed in the standard
HLLs or assembly languages referred to as “[across…]
programming languages”, even if some of the
interfaces, modules or tiers are “programmed” in an
XML-based implementation. Examples are Microsoft’s
Windows Presentation Foundation (WPF), which is a
graphical subsystem of .NET Framework 3.x (formerly
called WinFX), and Microsoft’s eXtensible Application
Markup Language (XAML) used in WPF to define objects
and their properties, relationships and interactions. The
.NET framework does not, however, use any ProgXML
type approach for the explicitly “traditional
programming” part of the software development
processes/programming activities involved, only for the
implicit part inherent in the XML databases that
facilitate the interfaces and interconnections (which, of
course, are an essential part of the “software
technologies”, and do need to be “programmed”).

 ProgXML — Programming-XML
Michael Hugh Knowles

11 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

Early Bootstrapping
Back in the early days of computing,

programmers used assembly language to program
primitive HLL compilers which were then used to
program more sophisticated compilers in a
bootstrapping process that eventually yielded an almost
pure HLL approach to both systems and applications
programming. Although HLLs are used to program the
XML systems generally used today in more highly
intelligent interactive databases and electronic
documents, our most common software development
methods and methodologies have not subsequently
utilized XML to bootstrap XML-based software
development/programming technologies. The situation
is ripe for a new wave of the future of software
development: “Programming-XML” or “ProgXML”, of
which we will offer here a “Pie-in-the-Sky Portent”.

ProgXML
PRE-REACTION WARNING: the reader may find

self saying to self something like “This isn’t new! I’ve
heard of people using XML this way.” This is just the
point that needs and wants to be made here. In areas
where there has been no pre-existing HLL, and
insufficient desire on the part of management to spend

 ProgXML — Programming-XML
Michael Hugh Knowles

12 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

$$$ to develop and maintain yet another HLL-compiler-
etc complex, people have tried an XML-based approach
for $ or $$ instead of $$$ or even $$$$. They have just
never tried a seriously XML-based approach to replace
our current day-to-day workhorse HLLs—C#, JAVA, C++,
FORTRAN, COBOL (you should laugh, but remember
this: I know a guy who makes $400K a year converting
old COBOL into “new” COBOL).

“ProgXML”: Computer programming itself needs
to start moving in the direction of one of computer
science’s greatest advances: XML. We need to start
evolving a programming version of XML to do software
development with ProgXML-based program-data-base
software interactively linking the applications/systems
and their developers/managers (human or machine) to
the programs under construction/debugging/review/-
upgrading, and further to “distributed” co-developers/-
managers, user libraries, debugging tools, project
management tools, documentation, tutorials, databases
and other resources the program and/or
developers/programmers will use, etc. The possibilities
for optimizing software development with regard to all
the usual performance metrics, including speed,
security, and R&D costs, are immense.

 ProgXML — Programming-XML
Michael Hugh Knowles

13 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

“ProgXML” should not be thought of as a yet
another High-Level Language, nor as a family of HLLs. In
particular, it is not like LISP, once thought of as the HLL
answer to the intractable problems of Artificial
Intelligence, or even FORTH, which is actually a Multi-
Level Language (which had great potential for evolution
until it was prematurely standardized, an all too
common death-knell for ideas with great potential, even
if “their time has come”).

The idea is that the programmer will interact
with the ProgXML system to describe, “internalize” and
manipulate the semantics (and pragmatics) of the
desired “program” or “subprogram” software, but not—
necessarily—with a standard HLL-type syntax for doing
this. In fact, multi-dimensional modalities are sure to
evolve quickly, bootstrapping from what are now
standard GUIs.

It will be somewhat easier if we digress and just
think in terms of presenting-rendering or displaying
existing code (“legacy code”). The software code—i.e.
its semantics and “pragmatics” (e.g. errors relating to
hardware limitations in a target computing
environment)—would exist independently of any HLL.
Just as XML allows many different ways of presenting-

 ProgXML — Programming-XML
Michael Hugh Knowles

14 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

rendering-displaying the data held in an XML database,
ProgXML would allow—not as a primary modality,
except perhaps early in the bootstrap evolution of
ProgXML—the program or subprogram to be displayed
as (what used to be called) “source code” in C# or JAVA,
or in any other HLL, as long as the ProgXML software
has been itself extended to allow presentation in that
HLL. Eventually the presentation or display of existing
code would primarily be in whatever interactive
modalities are evolved for use with ProgXML, and the
extensibility of XML means that new presentation
modalities can always be programmed to
present/display (for viewing or modification) new code
as “legacy code”, i.e. as pre-ProgXML HLL “source code”
with correct syntax, along with other indications of its
semantics and pragmatics. It could even generate
compilable HLL source code, for legacy target situations.

Now let’s switch back to entering and
manipulating program semantics (and—we should
emphasize—pragmatics). Initially, i.e. early in the
evolution of ProgXML, the programmer could
input/enter program semantics e.g. in C# and see its
presentation in JAVA. S/he could use different HLLs,
according to the appropriateness of that HLL for viewing

 ProgXML — Programming-XML
Michael Hugh Knowles

15 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

or modifying the particular bit of code. Or multiple
programmers could each be programming in whatever
HLL they chose and viewing the presentation of
someone else’s existing code again in whatever HLL
they chose.

New programming interfaces would quickly be
evolved to take advantage of ProgXML’s extensibility.
For example, we use 2 dimensions to interface with
spreadsheet, and we could just as easily start to use 2 or
“3” or more dimensions to input program semantics (for
e.g. complex decision tables, which are almost
impossible to program correctly using standard
“structured programming”, one of our “legacies” from
the ’70s). We use forms to enter data in databases,
where the data is checked for validity, and we can just
as easily use forms to enter program semantics, with
immediate syntax validity checking, even if not 100%
effective error detection. The forms would have built in
“help” and “wizards” to aid in code semantics and
pragmatics input. Since some code semantics has
already been entered, at least some of the newly
entered semantics can be checked for semantic validity,
e.g. the proper use of an already (well-) defined variable
as a subroutine parameter, not just by syntactic data

 ProgXML — Programming-XML
Michael Hugh Knowles

16 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

type, but by semantic data type and particularized data
attributes. The same goes for checking pragmatics, e.g.
if you know in advance that you want to run the
program on both 32 and 64 bit processors.

MathML as an Example
MathML, for example, which already allows

math calculations to be done (somewhat) portably in
Mathematica-Maple-MatLab-MathCAD type
environments, is already being developed somewhat
along these lines for use in electronic documents and
web pages, which will then be capable of interactively
producing calculations, graphs, plots and so on for the
reader, within limits that can be set by the provider. E.g.
a user might be able to choose from a list of (or describe
arbitrary new) wavelets, place and orient them, and
then watch a movie of them interacting
with/filtering/transforming a system with user
selectable parameters. XML has already found a
permanent home in popular spreadsheet software. This
wave of the future for interactive mathematics can—
and must—be extended to software development.

 ProgXML — Programming-XML
Michael Hugh Knowles

17 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

ProgXML Evolution
Programming-XML software will go much further

and give developers the software R&D version of
WYSIWYG (which we can here consecrate as
“WYPIWYG”—“What You Play-with Is What You Get”),
but oriented toward the dynamics of instantaneous
testing, distributed programming, program distribution
(including “Windows Live” type products) and
execution, which must all go way beyond the statics and
dynamics usually associated with the XML-based
combinations of electronic&paper documents that are
now evolving.

Ease of use can be expected to evolve extremely
rapidly. For example, as already hinted at above, syntax
will no longer be as problematic as now (compile; get
error message; “decode” error message; re-read
manual; put right punctuation in right place; re-compile;
repeat indefinitely) since at worst the researcher-
developer will fill in a form—that insists on completely
correct “syntax”, and possibly on correct semantics and
pragmatics, within limits—with labeled and on-screen
documented text fields for the elements of e.g. an
object declaration or a heavily parameterized procedure
call to a library/API routine. This will catch all syntax

 ProgXML — Programming-XML
Michael Hugh Knowles

18 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

errors, and many semantics errors, and even some
pragmatics errors. Immediate extended feedback/-
debugging at entry-time of some program semantics—
internally held as statements/expressions/etc in a
ProgXML “semantics-pragmatics markup language”—
likewise becomes almost trivial to offer. Programs can
be viewed and interacted with in various dynamically
developer-chosen “presentation markup renderings”,
initially in various popular HLLs (which will be important
at first), and eventually in highly evolved ProgXML-GUI-
based presentation-display styles.

Not only will standard programming practice be
optimized, but the newer software development styles
of “agile software development” and “extreme
programming” will benefit greatly from a ProgXML
approach. The benefits of their strong points should be
easy to improve significantly, and their weak points
should be much easier to overcome using ProgXML.

ProgXML Extensibility
Except for user-named subroutines, standard

HLLs only allow explicit statement of that particular
HLL’s linguistic-conceptual constructs. The “high-level
meaning” of, for example, an assignment statement will
be implicit, and often difficult to discern. ProgXML will

 ProgXML — Programming-XML
Michael Hugh Knowles

19 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

allow the developer to explicitly eXtend the semantics
“Markup Language” and its concepts/constructs to
match the desired program much like the famous Dutch
computer scientist Edsger Wybe Dijkstra envisioned in
the late ’60s, and to likewise keep the semantics of all
levels of the program not only explicit, but computer
accessible semantically in a way not achievable with
standard HLL inline comment text.

Digression: FORTH is the only language currently
extant that comes close to fulfilling Dijkstra’s dream of a
“structured programming” system in which one would
explicitly design “languages” (expressed in those days in
the structuring and naming of subroutines, variables
and other data structures) to solve the classes of
problems the programmer faced/perceived. These
classes of problems and the corresponding languages to
solve them needed to be designed in various levels 1) to
implement in lower levels the concepts/constructs of
the higher levels, and then 2) to express the problem(s)
solution(s) at each level, including the “highest level”.
Unfortunately, FORTH lost its huge potential for
popularity when average program-size ballooned and
scalability became all-important. Also unfortunately,
Dijkstra’s concept of “structured programming” (as first

 ProgXML — Programming-XML
Michael Hugh Knowles

20 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

designing languages to solve classes of problems and
then to express in those languages particular solutions
to the particular problems in those classes that were
perceived to be “the ones”, evolving those solutions to
match the evolving problem perceptions) lost out as a
programming paradigm-methodology, at least in the US,
to the wave of “top-down structured programming”
paradigm-methodologies that swept the US. These
latter merely structured particular solutions to the
perceived problems, without the insights that came
from in-depth analysis of the problems as being
exemplars of a class, and even analysis of the
“perceptions” themselves. “Top-down structured
programming” was/is a far less dynamic and
“malleable” approach than Dijkstra’s… “might have
been”. End Digression.

This article is intended to spark interest in and
promote the initial evolution of ProgXML-based
software development. ProgXML systems will allow
much more sophisticated software packages of any size
to be developed much more rapidly than at present.
This Programming-XML concept can be compared with
the Internet in importance, although it will directly
affect an entirely different community. It certainly will

 ProgXML — Programming-XML
Michael Hugh Knowles

21 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

not—initially—be as universally visible to the average
computer user as the Internet. On the other hand, it will
forever change the world of software development.

A Quick Laundry List Comparison: HLL(s) versus
ProgXML(s)

HLL characteristics currently include:

1. scalability problems in all aspects of HLL-based
program development are already perhaps the
greatest limiting factor for developing large
sophisticated programs; the semantics that HLLs
can efficiently express and implement only
extend through a narrow band of the dynamic
range of the problem semantics;

2. inherently one-dimensional text/implicit-
semantics-based as opposed to ProgXML-style
potentially multi-dimensional (presentation and
manipulation interfaces) explicit-semantics-
based; text implicitly retains the “values” (in
many senses) and “meanings” of the program in
the syntax of the expressions in the HLL; code
reuse is often cost-ineffective because reuse is a
semantic operation, and syntax is an inefficient
means and not an end;

 ProgXML — Programming-XML
Michael Hugh Knowles

22 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

3. error-prone text editing, with syntax/semantics
error detection delayed until (psycho-
ergonomically non-optimal) compile/build/run/-
debugging time; truly intelligent, truly program-
aware text editors infeasible to develop; e.g.
text-based but no explicit semantics-based
search/replace;

4. syntax so complex that HLLs are literally as
difficult and time consuming to learn as foreign
languages like French or German;

5. languages/compilers very difficult to extend;
6. text is input to lexical and syntax analyzers so

complex that language/compiler designers often
specialize over their entire lifetimes;
(paraphrasing the old joke: “it takes their entire
work-lifetime to learn to do what they should be
doing their entire work-lifetime”;)

7. the “presentation markup” (i.e. the listing of the
program text in e.g. C#) IS the “semantic
markup”; no flexibility in “presenting” program
semantics to the developer or manager;

8. large amounts of computer time dedicated to
(quasi-) redundantly re-compiling the massive
text-data-based source files (usually many many

 ProgXML — Programming-XML
Michael Hugh Knowles

23 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

times, often just to eliminate a few syntax errors
in a single program statement; and many more
times to debug semantics);

9. incremental compiling and linking/building not
the simplest procedures;

10. “non-malleable” programs ever more difficult to
maintain as they “mature”, reaching old-age and
even senility all too early in their life-cycles;

11. The more complex the objects in Object
Oriented Programming (OOPS), the more
tedious and difficult their input becomes with
standard HLLs;

12. programs with limited portability (for many
more reasons than mentioned above);

13. many languages, with many dialects each, most
of which can be made compatible only at
significant cost, further degrading portability
and/or reuse of established program code; i.e.
difficult to “mix-and-match” languages and the
code already written in them;

14. for “agile software development” and “extreme
programming” styles of software development,
HLLs have been the only game in town, even

 ProgXML — Programming-XML
Michael Hugh Knowles

24 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

though they can be seen to be a source of
bottlenecks and associated project delays;

15. integration of separate software utilities—such
as data-base and spreadsheet software—
requires serious development effort over
years/decades;

16. clumsy online interactive documentation for
developers and users; only clumsy online access
to rest of developing program code (viewing its
text in a text editor), no database style access to
it (where e.g. the system knows what the
semantics of a particular variable is);

17. clumsy debugging tools for developers, difficult
to modify as needed;

18. rapid prototyping difficult; prototype software
not “malleable” into deliverable product;

19. when users run across bugs, it is difficult for
them to communicate them to the developers,
for many reasons;

20. legacy HLL to new HLL translators exist, but
often the decision is a completely new re-
programming effort;

 ProgXML — Programming-XML
Michael Hugh Knowles

25 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

21. evolutionary potential of standard HLLs
practically exhausted, especially in a life-cycle
cost-effectiveness sense;

22. although complex real-world problems have
many possible dimensional-
orientations/directions from which to analyze a
given problem set and then design top-down
structured programs, current HLL oriented
programming systems do not allow more one of
those to be implemented “cooperatively/-
interactively”; this is somewhat like an engineer
having to decide which of any number of
possible orthogonal 2-D views is “the one”, as
opposed to today’s 3-D CAD-CAM systems which
allow just about any conceivable points and
directions of view;

23. and many more.

ProgXML characteristics will eventually include:

1. scalability problems mitigated/postponed yet
again; ProgXML has far more potential to be
evolved to be more inherently scalable than
standard HLLs, which have little or no such
evolution potential;

 ProgXML — Programming-XML
Michael Hugh Knowles

26 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

2. potentially multi-dimensional (presentation and
manipulation interfaces) semantics-and-
pragmatics-based; the meanings of the program
expressions are retained in their semantics-
pragmatics markups; code re-adaptation/reuse
can be made much more cost effective because
re-adaptation/reuse is a semantic (and
pragmatic) operation;

3. ProgXML interface guarantees “syntax”
correctness as the program is entered and/or
modified; examples include:
a. when entering strings or block of code, the

text-box/form-field forces the string or block
of code to be properly “delimited”;

b. variable identifiers can be chosen from a list,
facilitating proper declaration and scoping,
with variable typing checked/enforced at this
time; comments, including ones that can be
computer interpretable and applicable, are
immediately available for each identifier,
aiding semantic accuracy;

c. if variable identifiers are typed in directly,
they are checked immediately for proper or

 ProgXML — Programming-XML
Michael Hugh Knowles

27 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

ambiguous declaration and scoping, with
relevant feedback;

d. explicit intelligent semantics/pragmatics-
based search/replace will not only guarantee
“syntactic” correctness, but also greatly
facilitate semantic-pragmatic correctness;

e. if the developer/programmer for some
reason wants to leave a construct in an
unfinished state, the system can
“remember” this and automatically insert
and/or substitute appropriate code if, for
example, when the construct is included in a
preliminary debugging/“shakedown”
exercise;

4. ProgXML interface guarantees some (but not all)
semantic(s) correctness as program is entered
and/or modified (beyond e.g. typing of
variables);
a. a 2-dimensional (or n-dimensional) decision

table can be checked for rudimentary logical
correctness;

b. programming (some) objects lends itself to
multi-dimensional and/or graphical or visual

 ProgXML — Programming-XML
Michael Hugh Knowles

28 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

representation (see Moody, Daniel L., “The
‘Physics’ of Notations”);

5. ProgXML semantic-pragmatics, presentation-
markup languages, and systems are very easy to
extend; extensions would not necessitate
anything as complex and costly as extending an
HLL and its compilers;

6. program semantics (and pragmatics)—at all
levels—is held in ProgXML “Programming-
semantics-pragmatics-extensible-markup” form,
greatly facilitating access at those same
informational-semantic-pragmatic levels;
developer doesn’t have to read-interpret
millions of lines of e.g. C++ code in text files to
decipher semantics as s/he does now;

7. easily developed/extended interactive interfaces
through ProgXML-driven dynamically one/two/-
multi-dimensional forms/fields that are GUI in
addition to current text-field-type screen-forms
for entering data into XML databases; so,
theoretically and practically, we must start
thinking in terms of multi-dimensional syntax for
the “ProgXML language(s)” (e.g. their input-
presentation routines), as opposed to traditional

 ProgXML — Programming-XML
Michael Hugh Knowles

29 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

one-dimensional syntaxes associated with
standard HLLs; examples:
a. 2-dimensional decision tables can be entered

very simply using an interactive GUI; 3-
dimensional decision tables are also
relatively straightforward;

b. 2/3/?-dimensional graphs (for input-output)
can be programmed or input 2-dimensionally
(“piecewise” and “orientatably”), and output
as currently (see Moody, Daniel L., “The
‘Physics’ of Notations”);

8. easy to take advantage of a Dijkstra-style
approach of designing input-presentation
markup languages/interactive-GUI “languages”
to solve classes of problems and then express
particular solutions that are dynamic and
“malleable” with respect to the evolution of
problem perception (successfully to the extent
that the “class-ification” and evolution-
extrapolation analyses were done well);

9. XML-based interface can offer extensive/-
extensible “hand-holding” for entry/viewing/-
modifying/debugging of what are now standard
HLL syntax and initial semantics-pragmatics

 ProgXML — Programming-XML
Michael Hugh Knowles

30 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

levels, even to the extent of wizards and/or
tutorials that can be invoked dynamically, for
e.g. objects in general, especially complex library
objects, setting up “DLL”/“API” calls, etc, in
addition to having database style access to
existing code (e.g. libraries and programs already
existing or under development) and its
semantics-pragmatics (it was always “obvious”
to many besides this author that the concept of
a “database” developed extensively early on
should be extended beyond data to programs,
program code and programming, but… it never
happened; now it can happen);

10. likewise, use of e.g. objects can be initially tested
at entry time, in play, test and/or tutorial modes;

11. input of more complex objects (OOPS) can be
made much easier with ProgXML hand-holding,
e.g. with GUI;

12. semantics-based “source” allows ProgXML
encodings that can be dynamically optimized for
various qualities, such as adaptability to a given
class of hardware/configurations or to a given
class of presentation markup rendering
“languages” (e.g. to help people who still need a

 ProgXML — Programming-XML
Michael Hugh Knowles

31 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

C# or JAVA style interface to the program); this
base/mode retains the “values” and “meanings”
of programs at all semantic levels that ProgXML
has been extended to; this should allow reuse of
the semantics at all levels, from highest to
lowest, which should be much more efficient/
globally optimal than trying to reuse the
syntactic description of fewer and lower levels of
the semantics;

13. multi-level implementation concept “languages”
(interactive “forms”, as above) interrelating non-
hierarchically to allow the program to be
conceived, interacted with, and developed-
evolved at the highest to the lowest levels
“simultaneously”, e.g. no/less need to discard
high-level concepts in developing or generating
“low-level implementation/code”;

14. complex real-world problems have many
possible dimensional-orientations/directions
from which to analyze a given problem set and
then design “top-down structured views” of a
possible program; a ProgXML system would
allow multiple such “presentation/interaction”
views to be pursued in “cooperative/interactive”

 ProgXML — Programming-XML
Michael Hugh Knowles

32 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

fashion; one could make some changes from one
presented point of view, and other changes from
another, and those changes could be checked by
the ProgXML system in much the same way as
modern CAD-CAM systems allow simultaneous
changes from different engineering points of
view and can “immediately” find inconsistencies
deriving from such specification changes to
different subsystems of e.g. a Boeing 777
entered by different engineers, as well as
tracking the evolution and (hopefully) extinction
of such inconsistencies and other bugs; this is a
major evolutionary step forward in our concept
of programming;

15. a ProgXML system is naturally synergistically
compatible with just about any/all reasonable
software development methodologies: agile
software development, Extreme Programming
(XP), Structured Systems Analysis and Design
Method (SSADM), etc. The benefits of their
strong points should be easy to improve
significantly, and their weak points should be
much easier to avoid/overcome using ProgXML.

 ProgXML — Programming-XML
Michael Hugh Knowles

33 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

16. variables etc. can simultaneously have
different/multiple “levels” of naming: standard
text names for various naming conventions (e.g.
Hungarian-Simonyi), shorter mnemonic/-
abbreviations for condensed display, nicknames,
expanded descriptive names; developer can
switch from one to another e.g. by hovering
cursor, selecting option, etc.;

17. overall system “malleability”, i.e. easy to modify
extensively but safely, at all levels, over entire
usage arena;

18. “integrateability” with other code from any
platform at many levels of semantics, in addition
to being more portable than traditional HLLs,
regardless of the input-presentation markup
rendering “languages” (e.g. C#) that were used
by the developer to generate the ProgXML-
based program code;

19. e.g. it should be feasible to integrate e.g. Office
software with workflow and business process
management software (even third party);

20. newer techniques like Unified Modeling
Language and Model Driven Architecture are
even easier to blend into a ProgXML

 ProgXML — Programming-XML
Michael Hugh Knowles

34 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

environment; a ProgXML environment can be
designed so as to minimize the de-
synchronization between the model and the
actual program, currently a major problem;

21. the software development styles known as
“agile software development” and “extreme
programming” can benefit hugely from a
ProgXML approach, which can both improve
their strong points and mitigate their weak
points;

22. relatedly, ProgXML offers many more
possibilities for “malleable” semi-automatic
modes, e.g. for dynamically combining
automatic code generation and manual tweaking
through some code-semantics-pragmatics
variant of “hinting” or other cross-level
directives semi-automatically/manually
embedded in the ProgXML, either as part of
initial ProgXML platform, or by developers in the
program under development;

23. code-generation tools and 4GLs (fourth-
generation languages) are very easy to design
into a ProgXML platform and integrate with
other approaches;

 ProgXML — Programming-XML
Michael Hugh Knowles

35 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

24. many new possibilities for more effective code
optimization (for size, speed, etc.) at higher
levels (e.g. algorithmic levels) and more globally
than ever before; end that all too common
combination of both code bloat and slooowww
code;

25. integrated testing, debugging, diagnostics and
performance testing, monitoring and
optimization, standards or requirements
adherence tools, and even project management
tools can easily be built into a ProgXML platform,
greatly reducing need to place any such directly
in program code;

26. ProgXML-data/program-base-type tools can
easily give much more of a picture of a ProgXML
program or program suite and its functioning
than any current tools can give of text based
programs/suites;

27. Incremental/just-in-time compiling and linking/-
building/executing should be easier than ever;

28. development infrastructure can be readily set up
for centralized or distributed-cooperative
development and management; (parts of) this
same infrastructure can optionally be made part

 ProgXML — Programming-XML
Michael Hugh Knowles

36 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

of the delivered product; since ProgXML
databases can be made accessible and
modifiable from all over the world, distributed
interaction with a ProgXML system/database/-
program should be straightforward;

29. a ProgXML system readily allows an important
variant of scalability: simpler user interfaces for
smaller-simpler development projects/-
programs, and more complex user
interfaces/tools only as needed for handling the
special needs of larger and/or more complex
programs, multiple distributed developers,
integrated project management, etc.;

30. integration of separate software utilities—e.g.
database and spreadsheet—will NOT require
huge development effort over years;

31. rapid prototyping/developing can be a reality,
with “requirements” that have been input into a
ProgXML system “malleable” into prototype
software, and prototype software “malleable”
into deliverable product;

32. “specification languages/programs” (evolved
into ProgXML versions) that can be executed to
help realize verification and validation are a

 ProgXML — Programming-XML
Michael Hugh Knowles

37 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

natural for ProgXML platforms; making such
“malleable” so that the initial specifications can
be incrementally and semi-automatically
transformed into final/deliverable programs that
meet performance requirements while
maintaining specified functioning will be much
more feasible with ProgXML platforms than
currently;

33. the one-time (1960s and ’70s) Holy Grail of
inputting particular hardware architecture
specifications into the compiler along with the
program and have it spit out the executables for
that processor and its peripheral chips (etc.; a
variant of the Universal Turing Machine
approach) starts to look more feasible with a
ProgXML approach; this could similarly help
interface to pre-existing “virtual machines”;

34. linking/building instructions can allow multiple
variants of routines—e.g. indirect-threaded-
interpretive versus “hard-coded”—to be linked
and/or run alternatively or collectively-
simultaneously in situ with the inputs and
outputs compared, resource usage and
performance compared, etc; for example, there

 ProgXML — Programming-XML
Michael Hugh Knowles

38 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

could be a fast version of a routine, a
“guaranteed bug-free” version, a small-footprint
version, etc;

35. when users run across bugs, the program they
are using can easily be made more immediately
helpful in both tracing and communicating the
bug/suggestions to developers;

36. the problem of ProgXML-izing legacy HLL
program source code is considerable, but will be
much more feasible than currently re-writing
e.g. COBOL programs in C++; but using only the
desired parts of a favorite HLL for input/output
presentation without having to inherit the
Procrustean Bed of the entire HLL and its
compiler is quite simple (e.g. one can use a
legacy For-loop syntax or Object syntax from C++
to input such or see already entered program
semantics output-presented in that syntax);

37. since ProgXML would (at least be extendable to)
use e.g. C# or JAVA as a presentation form for
the user to view and manipulate the program
code (held in XML form), it would also (be
extendable to) be able to output compilable C#

 ProgXML — Programming-XML
Michael Hugh Knowles

39 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

or JAVA source code, which is likely to be
desirable early in the evolution of ProgXML;

38. ProgXML has great long-term evolutionary
potential, especially in a life-cycle cost-
effectiveness sense;

39. a usefully working ProgXML system should be
easy to implement incrementally, with the first
milestone being bootstrapping to where
ProgXML is implemented in itself; thereafter,
system evolution would be rapid due to
ProgXML’s inherent “malleability”, “agility”,
“reusable patternability”, “source code”
manageability, and general ease-of-use;

40. our paradigms for computation are still largely
based on “calculate-and-halt-type” programs,
where e.g. “scope of variables” and “persistence
of data-structures” are very simple, and very few
of today’s programs are of that type; exploring
and experimenting with newer and more
appropriate computation paradigms will be
much more feasible with ProgXML;

41. the emphasis here on pragmatics in addition to
semantics in ProgXML—as opposed to the
predominantly syntactic approach of standard

 ProgXML — Programming-XML
Michael Hugh Knowles

40 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

HLLs—deserves emphasis; it is still too difficult
to readily foresee the numerous ways being able
to easily handle pragmatics issues more or less
directly in addition to directly handling
semantics issues will be found to be beneficial;

42. since a ProgXML system can always fall back on
using given HLLs for input and presentation, the
theoretical worst case of ProgXML programming
system is no worse than for a system comprised
of those same given HLLs;

43. and many many more.

Describing standard HLLs as high-cost, high-
maintenance dinosaurs may seem cute, but it is all too
true. Their truly useful days are numbered.

The above brief description of the possibilities of
a genus-species of programming systems based on the
concept of a “Programming-XML”—“ProgXML”—is just
a hint of one of the inevitable waves of our software
future.

With a right team, the initial research phase
would ideally be 2 to 3 years, with the third year acting
simultaneously as a “plan to throw one away; you will
anyway” pseudo-development phase. The fourth year
should see the development of a product that wouldn’t

 ProgXML — Programming-XML
Michael Hugh Knowles

41 Concept Paper / “Light Green Paper”
Informal Peer Review Copy

http://www.mhknowles.net/Papers/ProgXML-IPRC-mhk.pdf

be embarrassing to ship to beta users/general public.
Un-ideally (think Windows version 1), a product could
be produced in 2 to 3 years.

A right team should be feasible to assemble,
provision and launch at (e.g.) Google. The research
needs a great Arthur, ready to pull this sword from the
stone. I would be a great Merlin (a retired software
architect, middle 60s, unfortunately not in the best of
health), especially having gestated this complex of ideas
for years (even decades).

References

Moody, Daniel L., “The ‘Physics’ of Notations: Toward a
Scientific Basis for Constructing Visual Notations
in Software Engineering”, IEEE Transactions on
Software Engineering, VOL. 35, NO. 6, Nov/Dec
2009

	Advisory
	Abstract
	KEYWORDS
	Introduction
	XML – eXtensible Markup Language
	The Early Days of Computer Programming
	Microsoft’s .NET Framework(s)
	Early Bootstrapping
	ProgXML
	MathML as an Example
	ProgXML Evolution
	ProgXML Extensibility
	A Quick Laundry List Comparison: HLL(s) versus ProgXML(s)
	References

