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Abstract 
New theorem on bijections: if the pre-image and image sets  SP  and  SI  of a bijection  
B(SP,SI)  have an element  EC  in common, then one can construct a bijection from the pre-
image set with  EC  removed onto the image set with  EC  removed, i.e.  B*(SP-{EC}, 
SI-{EC}). Simple proof: if  EC  is identity subbijected onto  EC  under  B, this identity 
subbijection is removed, trivially constructing the desired bijection,  B*(SP-{EC},SI-{EC}). 
But, if  EC  is subbijected onto some other image element  EI, then some other pre-image 
element  EP  is subbijected onto  EC. We switch the pre-image  EC  and  EP, preserving 
bijectivity. This yields a bijection  B′(SP,SI), with  EP  subbijected onto  EI, and  EC  identity 
subbijected onto  EC. Again this identity subbijection from  EC  onto  EC  is removed from  
B′(SP,SI), trivially constructing the desired  B*(SP-{EC},SI-{EC}). We apply this theorem to 
a “Dedekind-infinite bijection” (a bijection from a set  SD  onto a proper subset of itself, 
showing that  SD  is Dedekind-infinite) so as to remove all common elements. We obtain a 
“Paradoxical Bijection” from a non-empty set onto the empty set, the Evil Twin of the 
Banach-Tarski Paradox, and a challenging new paradox for the community. 
bijection, bijection permutation, Dedekind-infinite, Dedekind-infinite bijection, Banach-Tarski Paradox, 
paradoxical bijection 

MSC [2000] Primary 03E99; Secondary 03A05, 00A30 

Audience 
This paper and its presentation (1079-03-89) at the 2012 Spring Southeastern Sectional 
Meeting (#1079) of the American Mathematical Society at the University of South Florida in 
Tampa, FL, on Saturday, March 10, are intended for a general audience familiar with the 
basics of transfinite set theory. It will help to know in advance what the Banach-Tarski 
Paradox is, what Dedekind-infinite sets are, what bijections are, and that they are essential to 
set theory.  
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Introduction 
In 1924, Stefan Banach (1892-1945) and Alfred Tarski (1901-1983) astonished the world with 
their Banach-Tarski Paradox1

 

. In this paradox (see Figure  0), a solid  3-dimensional ball is 
decomposed into a finite number of (geometrically non-intuitive) pieces that can be 
rearranged into  2  balls the same size as the first ball. A number of interesting variants have 
been presented since then. Tarski blamed the Axiom of Choice, as many have over the years, 
for this paradox, and much else. Almost everyone else has happily accepted the Banach-
Tarski Paradox as one of the most interesting paradoxes inherent in infinity.  

Figure 0: The Banach-Tarski Paradox:  1  solid ball becomes  2  solid balls the same size 
(Sans permission from http://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox.) 

As some authors note, the Banach-Tarski Paradox implicitly depends on2, besides being 
similar to, the concept of Dedekind-infinite. Two examples of this important similarity are that 
the natural numbers aka the positive integers can be doubled to get all the positive and 
negative integers, and the unit interval of real numbers  [0,1]  can be doubled to get  [-1,1]  
(each interval having the same number/cardinality of real numbers). In the late 1800s, around 
the time Georg Cantor (1845–1918) was getting ready to give birth to his own transfinite set 
theory3

Dedekind’s concept did in fact adroitly formalize mathematically the known paradoxes of 
infinity (some quite anciently known), and did so in the more general terms of the newly 
evolving set theory rather than being restricted to natural numbers, as had been previously 
been the case. This greatly aided the entrance into mathematics of infinity, as defined by its 
paradoxes—and made inevitable the entrance of those very same paradoxes. Although infinity 
was and still is axiomatically defined by what is now known as the Axiom of Infinity, 

, Richard Dedekind (1831-1916) proposed not only the concept of “strict one-to-one 
correspondences” (what we modernly call bijections from pre-image sets onto image sets) 
from infinite sets onto (necessarily also) infinite subsets, which strict one-to-one 
correspondences demonstrated that they were equinumerous (for which Dedekind used the 
term “similar”), he also proposed that this property of similarity/equinumerosity of a set with 
a proper subset of itself was not merely characteristic, but definitional of infinity. Sets that 
have this theoretical property are now known as Dedekind-infinite sets. We will coin a new 
term and call a bijection from an infinite set onto a proper subset of itself, i.e. one that 
demonstrates that the set is Dedekind-infinite, a “Dedekind-infinite bijection”.  

                                                
1 Wagon 1993. Wikipedia, “Banach-Tarski Paradox” 
2 Su 1990, p 3. 
3 Cantor 1874. Cantor 1915. 
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Dedekind’s concept became an essential cornerstone of the incorporation of infinity into the 
foundations of mathematics, primarily in the set theory of Georg Cantor.  

Many worried greatly about this acceptance, since amusing and engaging paradox can be 
extremely difficult to distinguish from excruciating and unendurable inconsistency. But most 
did decide (later) that they could distinguish the paradoxes inherent in infinity from 
contradictions that would have made mathematics inconsistent, still a theoretical calamity 
(despite recent developments of concepts of paraconsistency). After all, these paradoxes were 
so inherent in infinity that infinity itself could be mathematically defined in terms of them. 
Thus, with loud protest but without serious contest, infinity and its paradoxes were formally 
adopted by mathematics and welcomed into Cantor’s new set theory with open arms by some, 
by many in fact. Cantor had eminent supporters, including Dedekind of course, but also 
Bertrand Russell (1872–1970), and, most famously, David Hilbert (1862–1943) and his quasi-
religious exaltation of “the paradise which Cantor has created.” Cantor’s set theory has 
Kuhnianly4

But Dedekind, Cantor, Hilbert, Russell, and many others, overlooked an elementary 
theorem that bears on Dedekind’s concept. When applied to Dedekind-infinite bijections, this 
theorem leads to “Paradoxical Bijections”, a paradox so similar to and so intertwined with 
Banach-Tarski that it will eventually become known as “Banach-Tarski’s Evil Twin”.  

 outlived its once openly vocal opponents, so far. 

An example of a simple bijectivity preserving operation on bijections 
If we have a simple bijection from the set  {A,B,C}  onto the set  {E,D,C}  (it helps to think of 
them as ordered), such as in Figure  1, we see that is trivial to remove the common element 
subbijection  CÞC, in a completely bijectivity preserving fashion, to trivially construct a 
bijection from  {A,B}  onto  {E,D}, i.e. from the original pre-image set  {A,B,C}  with the 
common element  C  removed onto the original image set  {E,D,C}  with the common 
element  C  removed. 

{ A B C } ⇛ { 

A B } ß ß ß ß ß 
E D C E D 

Figure  1  Bijectivity preserving elimination of the  CÞC  identity subbijection 

Likewise, if we have a simple bijection from  {C,B,A}  onto  {E,D,C}  as in Figure  2, we 
see that is trivial to switch the pre-image elements  C  and  A, in a completely bijectivity 
preserving fashion, giving us again the  CÞC  subbijection we have on the left in Figure  1. 
As before we can remove this newly formed common element subbijection  CÞC  to again 
trivially construct a bijection from  {A,B}  onto  {E,D}. It is easy to see that bijectivity is 
trivially preserved by this overall operation and each of its sub-operations.  

                                                
4 Kuhn 1962. 
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{ C B A } ⇛ { 

A B C } ß ß ß ß ß ß 
E D C E D C 

Figure  2  Bijectivity preserving construction of the  CÞC  identity 
subbijection within the bijection by simply switching the pre-
image elements  C  and  A 

Formalizing this simple common element removal operation as a theorem 
We now formalize the above common element removal operation as a theorem, noting that it 
can be considered an elementary “generalized permutation” of a bijection or a combination of 
such. It is important to note that the now standard concept of a permutation as an arbitrary 
bijection from a set onto itself can easily and fruitfully be generalized, extended, and applied 
to bijections in general. However, even a basic study of these generalizations/extensions is 
beyond the scope of this paper. 

THEOREM: Given a bijection  B(SP,SI)  from a pre-image set  SP  onto an image set  SI , 
where  SP  and  SI  have at least one element  EC  in common, then using only simple 
bijectivity preserving operations one can construct a bijection  B*  from  SP−{EC}  onto  
SI−{EC} , i.e.  B*(SP−{EC},SI−{EC}).  

PROOF : In constructing this new bijection  B*  we have only  2  possible cases for the 
common element  EC : 

1) If the common element  EC  is already paired with itself (subbijected onto itself under 
the bijection), then we can entirely remove this identity pairing (the identity 
subbijection of the pre-image  EC  onto its image self), and what remains will trivially 
be a bijection from SP-{EC}  onto  SI-{EC}, the new bijection  B*(SP-{EC},SI-{EC}). 

{ EP1 EC EP3 … } ⇛ { 

EP1 EP3 … } ß ß ß ß ß ß ß 
EI1 EC EI3 … EI1 EI3 … 

Figure  3  Bijectivity preserving elimination of the  EC  identity subbijection 

Bijectivity is trivially preserved by this operation. (The removal of a subbijection is an 
example of generalizing and extending the standard concept of “permutation” as the 
bijection of a set onto itself to more general bijectivity preserving operations on 
bijections.) In particular, we need not “reorder” (a la Cantor) any elements of  SP  or  
SP-{EC}  with respect to  SI  or  SI-{EC}.  

2) If  EC  is not identity paired with itself (subbijected onto its image self under  B(SP,SI) ), 
then  EC  in  SP  must be paired with some element  EI  in  SI  and some element  EP  
in  SP  must be paired with  EC  in  SI. In a (trivially) bijectivity preserving fashion, we 
can switch the pre-image elements  EC  and  EP  (a standard permutation, thought of as 
an operation, except that the pre-image and image sets are here not in general the same).  
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{ 

EP3 EP2 EC … } ⇛ { 

EC EP2 EP3 … } ß ß ß ß ß ß ß ß 
EC EI2 EI3 … EC EP2 EI3 … 

Figure  4  Bijectivity preserving construction of the  EC  identity subbijection within 
the bijection by simply switching pre-image elements 

We now have a generalized and bijectivity preserving “permutation” of  B, with the 
common element  EC  identity paired with its image self, the pre-image  EP  paired with 
(subbijected onto) the image  EI, and the rest of the bijection, i.e. from  SP-{EC,EP}  
onto  SI-{EC,EI}, remaining the same as in the original bijection. As in case 1), the 
identity pairing/subbijection from  EC  onto itself can be removed, leaving the (sub-) 
bijection from  SP-{EC}  onto  SI-{EC}, the needed bijection  B*(SP-{EC},SI-{EC}). □ 

This quasi-formally described operation and its result can easily be translated into a 
formally rigorous theorem. The operations involved cannot “generalizedly permute” a valid 
bijection into a non-bijection. We should also note the corollary, that if one derives/obtains a 
non-bijection as a result of applying this operation—or any sequence of such operations—to 
an ostensibly valid bijective mapping, that initial mapping cannot have been a valid bijection.  

Dedekind and his Trojan Horse 
Incomprehensibly, this at first glance innocuously correct theorem and proof, both simple and 
obvious once pointed out, has never been published in any mathematical work in the last two 
centuries, especially neither by Dedekind nor Cantor, and, far less understandably, neither by 
J. Henri Poincaré (1854-1912), considered one of the five greatest mathematicians in history. 
We can think of Dedekind’s concept of Dedekind-infinite, i.e. of a transfinite set defined as 
one that can be bijected onto a proper subset of itself, as a Trojan Horse, never really “looked 
into”, never really “vetted”, yet “infinitely” desirable to quickly bring within the city gates 
because it neatly formally summarized the paradoxes held so long to be so inherent in infinity 
that they necessarily defined infinity. (This sense of definition was later modified 
theoretically, but that does not affect our investigations here.)  

Just as the Trojans should have “vetted” the Trojan Horse designed by the incomparably 
crafty Greek Odysseus and left for the Trojans in hopes that they would take it within the city 
walls, Dedekind, Cantor, et al, should have carefully vetted this concept now known as 
Dedekind-infinite before it was made fundamental within the newly evolving set theory of 
Georg Cantor. They should have rigorously tested Dedekind’s formalization using the newly 
developing formal tools of set theory to study the question of whether the paradoxes of 
infinity were mere ancient mathematical naiveté, or whether their formalization would have 
the necessary mathematical consistency when made essential to the foundations of 
mathematics.  



6 

 

It is inside this Trojan Horse of Dedekind that, instead of Greeks, we find the Evil Twin of 
the Banach-Tarski Paradox. Instead of a solid ball that can be doubled, just as infinity can be 
doubled and still equal infinity, we find the other half of Banach-Tarski hiding in this 
cornerstone of set theory, hiding within the concept of Dedekind-infinite. We find:  

• “Paradoxical Bijections” 
Applying the simple bijectivity preserving operation of the equally simple theorem 
proven above to all the common elements of the pre-image and image sets of 
Dedekind-infinite bijections gives us “Paradoxical Bijections”, bijections from non-
empty sets onto the empty set, corresponding to “subtracting” a solid ball from both 
halves (reversed) of the implied equation (the rearrangement is reversible) of Figure  0  
to get the result that  1  solid ball equals… nothing.  

Theoretical difficulties 
We find theoretical difficulties here of the utmost formal importance. The reader will 

remember that the formal definition of mathematical “theory” is given as the basic 
assumptions—the axioms and rules of inference—of the theory, together with all the theorems 
that can even possibly be derived from them. There is no discrimination at this stage—or at 
any later stage—based on whether or not the theorem that has just been proven contradicts a 
previous theorem.  

The royal tradition of primogeniture—which here would be that the first theorem proven 
takes precedence over any later proven contradictory theorem, which latter is therefore not 
accepted into the royal line—has no formal place in a mathematical theory. The same holds 
for the royal tradition of agnatic primogeniture—which here would be that a second, “more 
royal” theorem proven later takes precedence over the earlier, now the “contradictory” 
theorem, which previously former now latter is (almost Biblically) therefore disowned by/-
from the royal line. This too has no formal place in a mathematical theory, though we may 
discover informal/extra-formal occurrences.  

And, the formal definition of an “inconsistent (mathematical) theory” is that the theory is 
inconsistent if it is even possible to derive contradictory theorems within the theory. So, 
because of the formal definitions of “theory” and “inconsistent theory”, one may never 
theoretically reject any derivation (within the theory) as “invalid” merely because it results in 
a contradiction. Likewise, the derivation of a contradiction may never be taken as indicating 
that the derivation took place outside of the theory in question.  

If one is not able to remove, as described above, all the common elements of a given 
Dedekind-infinite bijection, then set theoretically there must exist within set theory the 
contradiction of the simultaneous existence of a bijection where both the pre-image and image 
sets have a common element, and that that same element both can and cannot be removed 
using the simple theorem-based bijectivity preserving operation proven above—within set 
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theory. So, if we insist on the formally defined consistency of set theory, then within set 
theory we must be validly able to derive—and therefore by the formal definition of “theory” 
must derive—“Paradoxical Bijections”, the Evil Twin of the Banach-Tarski Paradox!  

To make that result even more compelling, we will also note that if  º{1,2,3,...}  is the 
image set of a Dedekind-infinite bijection, and the pre-image set is therefore a proper superset 
of  , we can use finite induction, often known as mathematical induction, to remove all the 
natural numbers from the pre-image and image sets5

It will be important to some to here also note the relationship to set subtraction of applying 
the common element removal theorem/operation given above to remove all common elements 
in a Dedekind-infinite bijection. There is a common complaint/ objection/comment from 
beginning mathematicians and non-mathematicians concerning the disparity between the set 
subtraction from a Dedekind-infinite set of its defining proper subset and the standard 
transfinite cardinality result that  

, giving us as before a “Paradoxical 
Bijection” from a non-empty set onto the empty set. The reason this argument can be 
considered more compelling is that to deny this argument we would have to abandon finite 
induction. Since finite induction is the conjoined identical twin of the Axiom of Infinity, 
abandoning finite induction is tantamount to abandoning and thus falsifying the Axiom of 
Infinity… and much of set theory along with it. 

0 0nℵ + =ℵ 6

Re-evaluating a paradigmatic construction of a Dedekind-infinite bijection  

, which derives from the cardinalities of a 
Dedekind-infinite set that has a finite number of elements “more” than its proper subset: “But 
there are still elements left over!” 

Look at Figure  5  and imagine that we have a bijection consisting of any number of pre-
image  ● s  each subbijected onto a single image  ⋃. The reason for using all  ●s  to represent 
the pre-image elements is that Cantor’s concept of cardinals is that, not only were any 
orderings of the elements abstracted out (part of Cantor’s abstracting cardinals from ordinals), 
but even what the elements were, e.g. the values of any numbers and even the fact that they 
were numbers, was/were abstracted out. Only the theoretical fact that the elements were 
distinct from each other was not abstracted out. The image elements are represented as  ⋃s  
for similar reasons, but also to distinguish them from the pre-image elements. So, e.g. the 
numbers  2  and  32  are each distinct single elements, cardinally, and can be represented for 
our cardinal purposes here as  ●s  or  ⋃s).  

Now look at Figure  6  and notice the as yet unsubbijected pre-image element  ●  on the fa r 
left. Try to decide which of all the subbijected  ●s  you want to switch that unsubbijected  ●  
with in order to subbiject onto its  ⋃  in the final total bijection of all the  ●s  onto all the  ⋃s. 
Remember that we eventually need to subbiject all the pre-image  ●s  onto all the image  ⋃s  

                                                
5 Borowski and Borwein 1991, 222. 
6 Cantor 1915, §6, (2), 104. 
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without adding an (unsubbijected)  ⋃… and without “disappearing” a  ●. Any unsubbijected 
pre-image  ●  must eventually become subbijected onto some image  ⋃  before we can 
complete the construction of this final total bijection that set theory says we are theoretically 
able to construct (and therefore theoretically must construct as part of deriving all possible 
theorems within the theory). But we tend to forget that every  ⋃  we might think to add to gain 
a free  ⋃  must necessarily come un-free, with a  ●  already subbijected onto it. 

{ 

● ● ● ● ● ● ● ● ● ● ● … } ß ß ß ß ß ß ß ß ß ß ß ß 
⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ … 

Figure  5  We have a bijection with any number of single pre-image element to 
single image element subbijections, i.e. any number of  ● Þ⋃  
subbijections 

 

{ 

● ● ● ● ● ● ● ● ● ● ● … } ⤈ ß ß ß ß ß ß ß ß ß ß ß 
 ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ … 

Figure  6  Which subbijected  ●  do you want to switch the unsubbijected  ●  (on the 
far left) with to start constructing the total bijection?! 

Proceeding in this simple fashion makes the situation seem less… uncomplicated than it 
did as when proceeding unquestioningly as Cantor did over a century ago, which everyone 
accepted happily… almost everyone. Indeed, we have over a century of making progress in 
the direction pointed out by Cantor, Dedekind, Hilbert, Russell, Banach, Tarski, Gödel, 
Cohen, et al. A strong feeling… escalates that something has been overlooked somewhere. 

Did Cantor, et al, overlook anything?! 
Let’s backtrack a bit. The equinumerosity of the natural numbers and the even natural 
numbers has been considered obvious for millennia. The usual way of proceeding to show this 
is to merely point out that  nÞ2n  for all natural numbers  n. Cantor thought of infinity, or 
rather the first (and the only countable) cardinal infinity  0ℵ , as being the first (cardinal) 
number that could not be made larger by adding  1. His definition was considered more naïve 
than that of Dedekind, even though it was logically equivalent, and it never came to be 
accepted as ready for prime time. However, it did form the basis for Cantor’s demonstration 
of his concept of the “reordering” of a set, i.e. of a set that seemed to be larger than e.g.  
º{1,2,3,...}  of cardinality  0ℵ , so as to put it into a strict one-to-one correspondence with 
(or bijection onto)    itself. This “reordering” does not have to be of an ordered set, much 
like the modern definition of a permutation as a bijection of a potentially unordered set onto 
itself. And such a “reordering” is happening implicitly in the  nÞ2n  mapping above that 
seems bijective. It is this “reordering” concept of Cantor’s that the bijectivity preserving 
common element removal results shown earlier suggest that we look at more closely for… 
“oversights”, which it turns out are easy to find. 
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Cantor gave the example (or something close to it) of “reordering” the set  È{0}  (a 
“proper superset” of  ) so as to put it into a one-to-one correspondence with  . He mapped, 
seemingly bijectively, every  n  in  È{0}  onto  1n +   in  . This operation embodied his 
concept of “reordering” the elements of  È{0}  so as to put them all into a strict one-to-one 
correspondence with the elements of  , and his concept that the first cardinal infinity, or for 
that matter any cardinal infinity, could not be made larger by adding  1. Given the seeming 
success of this “reordering”, we can see how the transfinite arithmetic result,  0 01ℵ + =ℵ , 
immediately follows. And from  0 01ℵ + =ℵ   follow  0 02ℵ = ⋅ℵ   and  0 02 2 2ℵ ℵ= ⋅ , the well-
known transfinite arithmetic results that so resemble the Banach-Tarski Paradox, and that can 
be seen to derive initially from Dedekind-infinite bijections. 

But Cantor seems to have forgotten a fundamental principle of mathematics, that when one 
defines an entity, and then uses that defined entity, one must always be able to re-substitute 
the definition for the defined entity everywhere it is used and get the same result. In our case, 
Cantor seemingly performed an infinite number of bijective mappings,  nÞn+1, 
“simultaneously”. At least no one was concerned about whether these mappings were 
“simultaneous” or not.  

But, by one of the most important fundamental principles in mathematics, we must be able 
to do this infinite number of  nÞn+1  mappings precisely as infinity is defined in the Axiom 
of Infinity. There, infinity, or rather the infinite set of all natural numbers  º{1,2,3,...}, is 
first partially defined as containing the (starting) element  1; then, a conditional says that if  n  
is an element of  , then  1n +   is also an element of  ; so, we start with  1  and continue 
with  2,  then  3… until we have used up all the natural numbers, precisely as in a proof by 
finite induction, or in an infinite schema with    as its index set. 

For Figure  6, this means that in order to construct the total bijection from the set of all  ●s  
(including the unsubbijected  ●) onto the set of all  ⋃s, we either start with the subbijected  ●  
in the subbijection  ●Þ⋃  corresponding with the natural number  1. (Or alternatively we 
could start with the  ●  in the  ●Þ⋃  subbijection that is indexed by the natural number  1  in 
the index set  .) We see the result of this in Figure  7. It should look familiar. 

{ 

● ● ● ● ● ● ● ● ● ● ● … } ⤈ ß ß ß ß ß ß ß ß ß ß ß 
 ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ ⋃ … 

Figure  7  We have switched the unsubbijected  ●  with the  ●  in the first  ● Þ⋃  
subbijection, corresponding to the natural number  1. What now?! 

When we use the term “logically equivalent”, it is essential to note that its use must be in a 
specific context, for a specific purpose. This is much like it is with the fallacies of logic set 
out by Aristotle millennia ago: the entities reasoned about must retain their precise values 
throughout the reasoning process, which someone simplified to the requirement that, for any 
entity  A  that is involved in a specific reasoning process, it is essential that  A≡A  throughout 
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that process.  If we have  ●  and  ●  involved in a process of reasoning, it may be that they are 
not logically equivalent since we may be referring to their precise position, which is not the 
same. So, the context and purpose are essential to the use of the term “logically equivalent”. 

In the case of Figure  6 and Figure  7, and our specific context-purpose of constructing a 
total bijection from the set of all subbijected and unsubbijected  ●s  onto the set of all 
(subbijected)  ⋃s, we can immediately notice that switching the unsubbijected  ●  with the 
first subbijected  ●  is logically equivalent to not switching it/them. It is also logically 
equivalent to switching them any number of times, even an infinite number of times, even 
Cantor’s absolute infinite (number) of times. We can also immediately notice that, in this 
same context and with this same purpose, each and every  ●Þ⋃  subbijection is logically 
equivalent to every other. We get the same result if we switch the unsubbijected  ●  with the 
first, the second, or any other subbijected  ●. We can also (less immediately) notice that it 
doesn’t really matter how many  ●Þ⋃  subbijections we have, since they are all logically 
equivalent here, and we cannot really get any further than Figure  6 and Figure  7 suggest that 
we can in constructing the total bijection that we need; we could have any number of  ●Þ⋃  
subbijections, even Cantor’s absolute infinite (number), even none, and we would not be able 
to construct the total bijection we need. 

So, if we insist on applying the principle that we must be able to replace each and every 
defined entity with its original definition and still get the same result, we find that Cantor’s 
construction of a simple Dedekind-infinite bijection using his process of “reordering” cannot 
be made to even appear to work at all. In fact, it starts to be “obvious” that the “cardinality” 
(now unexpectedly finding itself in question) of every set will be increased by adding a new 
element. This leads to many… consequences. 

What Evils of this Banach-Tarski Twin lie in wait for us?! 
Above we discovered the Evil Twin of the Banach-Tarski Paradox, “Paradoxical Bijections” 
from non-empty sets onto the empty set that can be readily and with formal validity derived 
within set theory. Accepting this Evil twin of “Paradoxical Bijections” may turn out to be 
decidedly more difficult than accepting the Banach-Tarski Paradox has been. But if we do not 
formally-theoretically accept this Evil Twin as we have formally-theoretically accepted 
Banach-Tarski, we unavoidably face the necessity of starting to seriously question set theory 
for the first time in over a century. We find ourselves in a traditional double bind, impaled on 
the horns of a theoretical and moral dilemma, faced with a Hobson’s choice, and all of these 
together with “zugzwang”7

1) Either we accept “Paradoxical Bijections” as the—co-equal—“Evil Twin of the 
Banach-Tarski Paradox”; or… 

:  

                                                
7 “Zugzwang” is German for “compulsion to move”, and is most often used when the only legal moves a chess 
player has are disadvantageous, and of course not moving is not a legal option either. 
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2) Or, as a community, we must commence a serious and sincere re-examination of set 
theory, we could even say an inquest, or more modernly we could conceive of it as a 
“deconstruction”8

One of the most salient issues, and difficult to assimilate, about the above simple bijection 
“permutation” theorem, its application to Dedekind-infinite bijections, and the discovery of a 
significant flaw in Cantor’s construction of a Dedekind-infinite set is that they seem to 
provide overwhelming evidence that the cardinality of any set is made larger by adding a new 
element. This would have “serious consequences” for set theory. 

 of set theory. 

If Banach-Tarski’s Evil Twin has its way, set theory will lose one of its favorite offspring:  
1) the Continuum Hypothesis (CH). 

This loss is inevitable if the cardinality of any set increases when a new element is added. 
We would need to change  0 01ℵ + =ℵ   to  0 0“ ” 1 “ ”ℵ + > ℵ . The “”s around  0“ ”ℵ   are to 
indicate that: 

2) 0“ ”ℵ , the first transfinite cardinal, and cardinal transfinite arithmetic in general,  
would also be casualties as their definitions depend on the theoretical existence of Dedekind-
infinite sets, in particular:  

3) º{1,2,3,...}, as the set of all natural numbers, the Axiom of Infinity that makes it 
a set,  

are yet more casualties as    could not be a theoretically proper set. Even the “cardinality” of 
Cantor’s “absolute infinite” must be increased by adding a new element, but in any case 
Cantor held it to be inherently inconsistent, because for him it represented (was) God9

It was mentioned that    would be a casualty. This is better understood if we understand 
that:  

, who is 
beyond any possible human sense of “consistency”.  

4) our concept of “cardinals” in one way they are distinguished from “ordinals”  
would also be a casualty, i.e. in the sense that the (finite or transfinite) ordinals keep 
increasing successively by  “1”  up to Cantor’s “absolute infinite”. The finite cardinals would 
no longer have  0“ ”ℵ   as a “ceiling” to “stop” at; the transfinite cardinals would not escape 
increase by adding  1. We would likewise even lose our concept of: 

5) the “cardinality of the Continuum”. 
(Our concept of the Continuum in set theory is so important that capitalizing the word, at least 
in this situation, seems only fitting.) And, more subtly and far more importantly, we would 
lose:  

6) the Continuum, because we lose our heretofore unquestioned concept that the 
Continuum can be constructed from points or sets of points!  

                                                
8 Only crudely in the sense of French philosopher, Jacques Derrida, with apologies. Wikipedia, “Jacques 
Derrida” 
9 Dauben 1979. 
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What can be constructed from points and/or sets of points will come to be called a 
“quantinuum”, or since the multiplicity of such entities is obviously boundless, e.g. the prime 
decompositions of their bases (reals as infinite base expansions) would most likely be 
different, even incommensurable, the plural “quantinua” would seem more to the point. Points 
and/or sets of points will be embeddable in a “true continuum”, or in “true continua”, but they 
will never be able to properly define it or construct it. And to round out this apocalypse, we 
would also lose: 

7) real numbers, as we conceive of them, since our concept of infinite decimal 
expansion real numbers with  ℵ0  decimal places to the right of the decimal point 
falters.10

Summary 

 

“When a long established system is attacked, it usually happens that the attack begins 
only at a single point, where the weakness of the doctrine is peculiarly evident. But 
criticism, when once invited, is apt to extend much further than the most daring, at first, 
would have wished.”  
Bertrand Russell11
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